Adaptive refinement for a local error bound based on duality
نویسنده
چکیده
This paper presents the basis of an adaptive mesh refinement technique aimed at reducing a local error, i.e. the error in a local quantity, which is defined as the integral of a stress or a displacement in a given subregion. Two pairs of dual solutions, one corresponding to the applied load and the other to the virtual action, dual of the local quantity, are used to bound the local error and to provide the element error indicators for the adaptive process. A test case is used to exemplify the behaviour of the technique.
منابع مشابه
Adjoint-based h-p adaptive discontinuous Galerkin methods for the 2D compressible Euler equations
In this paper, we investigate and present an adaptive Discontinuous Galerkin algorithm driven by an adjoint-based error estimation technique for the inviscid compressible Euler equations. This approach requires the numerical approximations for the flow (i.e. primal) problem and the adjoint (i.e. dual) problem which corresponds to a particular simulation objective output of interest. The converg...
متن کاملAdjoint-based h-p Adaptive Discontinuous Galerkin Methods for the Compressible Euler Equations
In this paper, we investigate and present an adaptive Discontinuous Galerkin algorithm driven by an adjoint-based error estimation technique for the inviscid compressible Euler equations. This approach requires the numerical approximations for the flow (i.e. primal) problem and the adjoint (i.e. dual) problem which corresponds to a particular simulation objective output of interest. The converg...
متن کاملEfficiency-based hp-refinement for finite element methods
Two efficiency-based grid refinement strategies are investigated for adaptive finite element solution of partial differential equations. In each refinement step, the elements are ordered in terms of decreasing local error, and the optimal fraction of elements to be refined is determined based on efficiency measures that take both error reduction and work into account. The goal is to reach a pre...
متن کاملLocal Error Estimates and Adaptive Refinement for First-order System Least Squares (fosls)
We establish an a-posteriori error estimate, with corresponding bounds, that is valid for any FOSLS L-minimization problem. Such estimates follow almost immediately from the FOSLS formulation, but they are usually difficult to establish for other methodologies. We present some numerical examples to support our theoretical results. We also establish a local a-priori lower error bound that is use...
متن کاملA Differential Evolution and Spatial Distribution based Local Search for Training Fuzzy Wavelet Neural Network
Abstract Many parameter-tuning algorithms have been proposed for training Fuzzy Wavelet Neural Networks (FWNNs). Absence of appropriate structure, convergence to local optima and low speed in learning algorithms are deficiencies of FWNNs in previous studies. In this paper, a Memetic Algorithm (MA) is introduced to train FWNN for addressing aforementioned learning lacks. Differential Evolution...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2003